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Shiro: Efficient and Accurate In-Storage Data
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Abstract—The log-structured nature of NAND flash storage
necessitates garbage collection in SSDs. Garbage collection (GC)
is a major source of runtime write amplification (WA), leading to
faster device wear out and interference with host I/Os. The key to
mitigating this problem is separating data by lifetime so that data
in the same flash block are invalidated within temporal proximity.
For higher lifetime prediction accuracy and adaptibility, prior
works proposed using machine learning algorithms for data
separation. However, existing learning-based solutions perform
data lifetime prediction at the host side, leading to several
drawbacks. First, host-side prediction does not have knowledge of
the internal data movement inside the SSD during GC, and thus
fails to leverage the opportunity to further separate GC writes,
resulting in suboptimal WA reduction in the long term. Second,
performing prediction at the host significantly prolongs the I/O
critical path and consumes host resources that could otherwise
be used for serving user applications.

We present Shiro, a holistic FTL design that performs in-
storage data separation for both user writes and GC writes for
maximal long-term WA reduction. For user writes, Shiro uses a
sequence model to accurately predict data lifetime by learning
lifetime distribution from long historical access patterns. For
GC writes, Shiro incorporates a reinforcement learning-assisted
page migration strategy that takes direct feedback from long-
term WA to further improve data separation efficacy. To address
the challenges posed by performing fine-grained and real-time
machine learning decisions inside the resource-constrained SSD,
we propose a suite of enabling techniques to keep computation
and storage overhead low. Extensive evaluation of Shiro on
real-world traces shows that Shiro can deliver 29%-68% lower
WA compared with conventional FTL and state-of-the-art in-
storage data separation schemes. Furthermore, thanks to lower
data migration overhead during GC, Shiro achieves significantly
higher steady-state I/O performance.

Index Terms—solid state drive, data separation, write ampli-
fication, garbage collection, machine learning.

I. INTRODUCTION

NAND flash-based solid state drives (SSDs) have seen wide
deployment in consumer electronics and servers to serve as
secondary storage. To provide higher capacity within small
form factors, modern NAND flash technology is advancing
towards higher storage density, with reduced endurance.. No-
tably, the transition from SLC to QLC flash increased density
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by fourfold, but the number of sustainable program/erase
(P/E) cycles dropped drastically [1]. On the other hand, write
amplification (WA) is an inherent challenge in SSDs due to the
characteristics of flash storage, leading to excessive P/E cycle
consumption and faster wear-out. A recent study highlighted
that WA in real-world production environments can exceed
100, meaning the amount of data written to flash can be over
100× the data written by users [2]. As a result, reducing WA
in SSDs remains an important area of study.

Garbage collection (GC) is one of the primary contributors
to WA in SSDs. Due to the ‘erase-before-write’ limitation, a
flash translation layer (FTL) is implemented inside SSDs on
top of raw flash, converting all write operations into append
operations, thus making the SSD conceptually similar to a log-
structured storage [3]. When the FTL exhausts its supply of
free pages (unit of read and write; typically 4-32KB) for new
writes, GC is triggered. This process involves selecting one
or more blocks (unit of erase; typically hundreds of pages) as
victims. The FTL copies the valid pages from victim blocks
elsewhere before erasing the blocks to free up space. WA arises
during this data copying process.

The key to minimizing WA from GC is separating data by
lifetime (data separation hereafter) [4], [5]. By grouping pages
with similar lifetimes into dedicated blocks, it becomes more
likely that the pages within the same block will be invalidated
around the same time. This increases the likelihood that the
FTL can find victim blocks with fewer valid pages, effectively
reducing WA.

Due to lack of future knowledge, we need to predict the
lifetime of incoming data by inferring at what time a piece of
data will be overwritten by the host. Most previous studies
in this area rely on rule-based approaches built on simple
heuristics [5]–[9], which lack adaptability and accuracy. Re-
cent successes of the application of machine learning (ML) in
system software [10]–[12] promise more adaptive and accurate
data separation using ML models [13], [14]. However, existing
solutions typically perform both model training and inference
on the host, leading to several limitations.

First, due to the black-box nature of SSDs, the host does not
have knowledge about the internal GC data placement. There-
fore, it is only possible to perform data separation for user
writes. Since prediction is not 100% accurate, mispredicted
pages remain in the wrong lifetime group, hurting long-term
WA. Although the SSD has the opportunity to further separate
such pages to more suitable lifetime groups during GC writes,
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a host-side scheme fails to leverage such opportunity. Second,
whereas training can be performed offline, prediction is tightly
coupled with application I/Os because the dispatch of a
write request must be postponed until the model has finished
prediction. This puts model prediction on the I/O critical path
and significantly degrades I/O latency as ML prediction is
generally much slower than simple rule-based heuristics.

An in-storage learning-based approach that performs data
lifetime prediction inside the SSD grants the data separation
scheme first-hand knowledge of data placement and ensures
the overhead does not consume extra host resources. However,
introducing learning-based data separation into the resource-
constrained SSD poses significant challenges. For user writes,
the effectiveness of data separation is maximized when the
lifetime of every page can be accurately predicted. Such
fine-grained predictions imposes strict requirements on the
efficiency of the ML model, particularly given that the write
latency of modern SSDs can be as low as a few microsec-
onds [15], [16]. While modern SSD controllers adopt multi-
core architectures [17], they still lag behind in processing
power compared with host-side hardware. For GC writes,
the information available for deciding the page’s migration
destination for the purpose of lower future WA is extremely
limited. Unlike user writes, where the host I/O pattern can be
relied upon for accurate decision making, it is challenging to
directly link the destination of page migration to its impact
on future WA. Designing a GC data separation policy for
lower long-term WA is therefore non-trivial. Furthermore,
metadata management for the data separation scheme must
avoid excessive consumption of on-device RAM, a limited
resource due to its higher cost compared to flash memory.

We present Shiro, a holistic FTL design that performs in-
storage data separation for both user writes and GC writes for
maximal long-term WA reduction. For user writes, Shiro uses
supervised machine learning model to perform fine-grained
data separation. The model in Shiro is a lightweight sequence
model that can extract information from prolonged historical
access patterns of a page by learning from a time series of
carefully selected features. For every written page, the model
is able to accurately predict whether it is short-living or long-
living. Shiro dynamically adjusts the classification criterion
at runtime with an adaptive data labeling algorithm. For GC
writes, Shiro incorporates a reinforcement learning-assisted
page migration strategy that takes direct feedback from long-
term WA for data separation. Specifically, the reinforcement
learning agent dynamically steers valid pages in the blocks
being GC’ed to multiple destinations and is given a higher
reward for each decision of the migration destination if the
observed WA of future GC operations is lower, thus evolving
toward lower long-term WA. On the input side, the agent
characterizes the valid pages based on a rich set of runtime
statistics.

To address the runtime overhead incurred by the data
separation scheme, Shiro introduces a set of optimization
techniques. For computational costs, Shiro masks ML com-
putation by leveraging the NVMe I/O process to remove
prediction from the I/O critical path. This is achieved by
parallelizing prediction with the data payload transmission and

other internal tasks. Additionally, Shiro caches intermediate
model prediction results (the hidden state) for each page. This
allows Shiro to enjoy the full might of the sequence model
without expensive iterative computation over long feature se-
quences. For storage costs, the on-board memory consumption
by ML metadata, such as feature extraction information and
the cached hidden state, is tackled with an efficient flash data
layout. The proposed flash layout enables Shiro to store all ML
metadata in flash and easily retrieve them in batches to RAM,
building an on-demand cache for quick access. Together, the
proposed techniques make real-time and fine-grained data
separation inside the SSD possible with low computation and
storage overhead. To the best of our knowledge, Shiro is
the first FTL design that successfully deploys complex ML
algorithms for in-storage data separation.

We prototype Shiro on a hardware-based SSD evaluation
platform and evaluate it against state-of-the-art in-storage data
separation schemes on real-world traces to showcase Shiro’s
superiority in reducing WA. We demonstrate that our proposed
optimization techniques successfully mask the overhead of
ML computation with almost no overhead perceived by the
host. Furthermore, trace I/O evaluation confirms that lower
WA can transform into substantial improvements in steady-
state I/O performance. This work is based on our previous
work published at DAC 2023 [18].

In summary, this paper makes the following contributions:
(1) We present Shiro, an FTL design that performs real-

time and fine-grained data separation inside the storage device
for both user writes and GC writes. Shiro uses a sequence
model that can learn from prolonged history of I/O patterns
to accurately separate short-living and long-living data written
by the user, and a reinforcement learning-based data migration
strategy to further separate GC’ed pages while taking direct
feedback from long-term WA.

(2) We introduce a suite of enabling techniques to address
the runtime overhead of the data separation scheme. Compu-
tation overhead is addressed by parallelizing prediction with
payload transmission and a caching mechanism for intermedi-
ate results to avoid costly iterative ML computation. Storage
overhead is tackled with an efficient flash data layout that
enables the storage of all ML metadata in flash, which can be
easily fetched to RAM in batches for fast serving at runtime.

(3) We prototype the proposed design on a hardware-based
evaluation platform and evaluate it against state-of-the-art data
separation schemes to demonstrate its effectiveness in reducing
WA and low runtime overhead. We also show that lower WA
effectively translates into substantial gains in steady-state I/O
performance.

II. BACKGROUND

A. SSD Preliminaries

Flash-based SSDs are built on arrays of NAND flash
chips connected to an embedded controller through multiple
channels. Each flash chip is organized into multiple levels of
operational units, arranged in decreasing granularity as dies,
planes, blocks, and pages. Flash dies operate independently
and support multi-plane operations within a die. Read and
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Fig. 1. Page lifetime distribution under different separation schemes.

write operations occur at the page level, and pages in a block
must be written sequentially but can be read in any order. Once
all pages in a block are written, the entire block must be erased
before rewriting. To abstract these constraints from the host,
the controller employs a flash translation layer (FTL) that con-
verts all writes into appends. The FTL uses an L2P (logical-to-
physical) table, typically stored at page granularity in the on-
device RAM, to map logical page numbers (LPNs) to physical
page numbers (PPNs) for optimal performance. Modern SSDs
also utilize ”superblocks” as the basic management unit [19].
A superblock comprises all blocks with the same die offset.
To leverage inter-die parallelism, the FTL allocates new pages
in a round-robin manner from ”open” superblocks. Once fully
allocated, these superblocks are marked as ”closed”, making
them read-only and pending for GC.

B. Tackling GC Write Amplification

When free pages deplete, GC kicks in to reclaim obsolete
pages. During GC, pages in the victim (super)blocks with valid
data must be copied elsewhere. This copying process is a major
source of WA in SSDs. Increased WA from GC accelerates
device wear-out and interferes with host I/O operations [20],
[21]. Addressing this issue has become a focal point for
researchers in recent years. The key to reducing WA from
GC is data separation, i.e., separating user-written data with
different lifetimes [4]. When pages with similar lifetimes are
grouped within the same blocks, they are more likely to
become invalidated in shorter time windows. As a result, the
FTL has a higher chance of finding a victim block with a
low valid page count, thus leading to lower WA. In fact, if the
lifetime of a host-written page is known in advance, an optimal
data placement strategy could achieve zero WA by organizing
pages in the order by which they are invalidated [5]. However,
this method is impractical due to lack of future knowledge.
Researchers thus developed methods to predict the lifetime
of user data for effective data separation [5]–[9], [13], [14],
[22]. Below, we briefly summarize existing data separation
approaches.

Rule-based separation. Existing rule-based approaches
include both host-side solutions [8], [9], [22] and device-
side solutions [5]–[7]. Host-side solutions enjoy the benefit
of richer information from user applications and the OS
kernel. Specifically, AutoStream [22] monitors the lifetime of
LBAs and directs those with similar lifetimes to dedicated I/O
streams. FStream [8] leverages file system-level knowledge to
separate metadata, journal, and file data writes. PCStream [9]
further brings in application-level information by clustering
writes according to their I/O call sites by referring to program
stack signatures. Although information from higher layers in
host-side software can potentially improve data separation

efficacy, the application, OS, and device interface (e.g., multi-
streamed SSDs [23] or ZNS SSDs [24]) must be adapted so
that the separation result can be communicated to the device.
Furthermore, since host-side solutions can only separate user
writes, they miss the opportunity to further separate GC writes,
which we show to be very effective in minimizing WA.

Device-side approaches are forced to use the limited knowl-
edge regarding host I/O patterns inside the device, but have
the advantage of full control over both user and GC data
placement. Among them, 2R [7], SepBIT [5] and MiDAS [6]
are the current state of the art. 2R [7] demonstrated that simply
separating GC writes from user writes can deliver significant
reduction in WA. SepBIT [5] uses the previously observed
lifetime of a flash as the estimate of its future lifetime to
separate user writes to hot/cold groups and GC writes to
multiple levels of groups. MiDAS [6] also adopts SepBIT’s
user data separation method, but applies a stricter admission
policy for the hot group to avoid false positives. For GC writes,
MiDAS builds a theoretical model to predict the WA under a
given group configuration based on page lifetime distribution,
and uses this model to find the optimal configuration.

Learning-based separation. Although rule-based predic-
tion can quickly yield prediction result, it suffers from limited
accuracy. Figure 1 shows the lifetime distribution of user-
written pages classified as hot or cold by SepBIT, MiDAS and
the ML model in this work. Here, a page’s lifetime is measured
by the number of pages written between two consecutive
writes to the page. The dataset is a write-intensive block
trace from Alibaba Cloud [25] (trace #144; see Section V
for detail). From the results we see that the lifetimes of pages
classified as “hot” by SepBIT and MiDAS span across a very
wide range. This is likely to lead to higher number of valid
pages in the hot group during GC, resulting in higher WA (we
experimentally verify this in Section V-D). In contrast, using
ML model can more accurately identify hot pages with shorter
lifetime, ensuring lower WA.

Prior works have proposed using ML models for data
separation [13], [14]. However, they all follow a host-side
design, suffering from weaknesses discussed earlier. Thus, our
goal in this work is to build an in-storage, learning-based data
separation scheme for maximum WA reduction.

III. SHIRO DESIGN

A. Shiro overview
Figure 2 shows the overall design of Shiro. Shiro uses

supervised machine learning to accurately and adaptively
predict the lifetime of pages written by the user to perform data
separation. During GC, it further separates valid pages into
multiple levels of superblocks with a reinforcement learning-
assisted page migration strategy for lower long-term WA. As
depicted in Figure 2, the main components of Shiro include:

1) The Page Classifier model. When processing a write
command from the host, Shiro uses the Page Classifier to make
a binary prediction for each logical page covered by the write
command to determine whether it is short-living (overwritten
in the near future). At the input side, the Page Classifier takes a
time series of the page’s historical access statistics as features
to learn from prolonged historical access patterns.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3586891

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 18,2025 at 01:30:04 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

I/O profiling

Block I/O requests

Metadata
Cache

W
ri

te
 r

e
q

u
e
st

s

RAM

NAND Flash

User superblocks

Feature
extraction

For each page:
short-living or long-living?

H
o

st
S

S
D

Model deployment

Xt-2 Xt-1 Xt

Yt

Time series features

Xt-3

Page Classifier

R
e
a
d

 r
e
q

u
e
st

s

DMA
Buffer

Upper Layers

Data pages Meta pages

Model Trainer

Device Driver

GC superblocks

RL Agent

Fig. 2. Overview of Shiro’s architecture.

2) The Model Trainer. Since there is no strict real-time
requirement for model training, Shiro trains the Page Classifier
model at the host to take advantage of host computation
resources. Specifically, the Model Trainer profiles user I/Os
from the device driver to collect training data used to train
the Page Classifier. The Model Trainer deploys the trained
Page Classifier by transferring model parameters to the SSD.
As the system runs, the Model Trainer continues training
data collection and periodically trains and deploys new model
parameters to adapt to changing workload patterns.

4) The RL Agent. During GC, the reinforcement learning
agent dynamically steers valid pages from the victim su-
perblock to multiple destinations (GC superblocks; see be-
low). We use a rich set of runtime page information as the
environment space to characterize each page to be migrated
so that the agent can perform meticulous decision making for
every page. The agent is trained continuously with long-term
write amplification as the reward (lower as better) to separate
GC-written data and reduce long-term WA.

3) NAND flash management. Shiro manages NAND flash
in the unit of superblocks. Data separation is performed
by separating pages into dedicated superblocks. User-written
pages are directed to user superblocks based on the prediction
result of the Page Classifier. There are thus 3 types of user
superblocks: short living, long living, or unseen (no model
prediction result due to lack of input features). GC-written
pages are separated into multiple levels of GC superblocks
based on the RL Agent’s decision. The number of levels of
GC superblocks is configurable, and we use 5 in the current
implementation. Within a superblock, user data are stored in
data pages, while meta pages at the tail hold ML metadata.

4) Metadata cache and DMA buffer in RAM. In RAM, Shiro
maintains a small on-demand cache of ML metadata for fast
metadata retrieval. The RAM also serves as a temporary buffer
for user data transferred from the host via DMA. The ML
metadata cache takes up 23MB RAM per 1TB of flash storage
assuming 16KB flash pages (Section III-D), and the DMA
buffer has a fixed size of 2 superpages.

In the remainder of this section, we will describe in detail
how the Page Classifier learns and predicts page lifetime for
user-written data separation (Section III-B), the reinforcement
learning-assisted page migration strategy for GC-written data
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Fig. 3. Skewed distribution of page lifetime and threshold adjustment process.

separation (Section III-C), and techniques proposed to enable
real-time learning-based decision making inside the resource-
constrained device (Section III-D).

B. Separating User-Written Data

Shiro uses supervised machine learning to predict the life-
time of data written by the user. To train the machine learning
model, we need to label pages according to their lifetime and
define a set of descriptive features to collect training data. In
this section, we describe how Shiro adaptively labels pages as
short-living and long-living, followed by the features and the
structure of the model used to learn the labeled training data.

Adaptive data labeling. On the output side, the Page Clas-
sifier is designed to make a binary prediction for each logical
page touched by a write command. The prediction result
indicates whether the page’s lifetime is lower than a threshold
value, which is adaptively set at runtime (described below).
In Shiro, we define the lifetime of a logical page as the
number of logical pages written between two writes to this
particular page. This is equivalent to using the global page
write counter as a virtual clock. The effectiveness of this
binary classification approach stems from the observation that
page lifetimes in real-world workloads usually follow a skewed
distribution [25], [26], as in Figure 3(a). This allows us to
set aside a group of “short-living” pages whose lifetimes are
significantly shorter than the rest to take advantage of data sep-
aration. Further, compared with multi-class classification and
regression approaches, a binary classification model usually
requires a smaller model capacity to achieve high accuracy
and is thus more friendly to the resource-constrained SSD.

Although prior works proposed using multi-class classifi-
cation [14] or regression [13] for fine-grained prediction, a
larger model is required to achieve satisfactory accuracy. For
example, the regression model used in ML-DT [13] takes over
100µs to complete a prediction on a server-grade CPU. In
comparison, a binary classification by the Page Classifier only
takes a few µs on the device controller (Section IV), making
it more suitable for resource-constrained environments.

Shiro dynamically adjusts the classification threshold for
training data labeling at runtime by sampling page lifetime.
Specifically, we define a write window as 5% of the total size
of the SSD written by the host. After each write window, the
adjustment process is triggered. To collect training data for
the Page Classifier, the Model Trainer profiles I/O requests
at the device driver level. Any write request targeting a page
that has been written before in the same window contributes a
lifetime sample. Thus, at the end of a window, Model Trainer
will have a set of sampled page lifetimes. Model Trainer then
adjusts the classification threshold according to Algorithm 1.
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Algorithm 1 The classification threshold adjustment algorithm
/* globals: initialized once */
step← 5 /* threshold adjustment step length */
function PICKTHRESHOLD(lifetimes, features, prevThres)

if prevThres = −1 then
/* for the first window, just use the inflection point */
return GetInflectionPoint(lifetimes)

p← PercentileOfV alue(lifetimes, prevThres)
maxAccu,maxThres← 0
for dir in [−1, 0, 1] do

t← V alueAtPercentile(lifetimes, p+ dir × step)
/* label and resample to a small, balanced training set */
trainFeat, trainLabel← LabelAndResample(

features, lifetimes, t)
/* train a lightweight model and evaluate accuracy */
accu← TrainEvalLightModel(trainFeat, trainLabel)
if accu > maxAccu then

maxAccu← accu,maxThres← t

/* adjust step */
if no adjustment in previous and current window then

step++ /* avoid getting trapped in local optimal */
else if adjusted in previous, no adjustment in current then

step−− /* try a finer adjustment step */
else if different adjustment direction in previous and current then

step−− /* fluctuation, decrease step */
else if same adjustment direction in previous and current then

step++ /* try to reach optimal faster */
step← min(abs(step), 10)
return maxThres

The goal of the classification threshold adjustment algorithm
is to dynamically adjust the threshold value toward the direc-
tion that can improve prediction accuracy. For the first window
after system initialization, Shiro picks a threshold directly by
first sorting the lifetime samples to acquire a set of (Li, i)
coordinates, where Li is the ith sample in the sorted sample
array (N samples in total). The corresponding sample of the
coordinate that has the maximum distance (dashed lines in
Figure 3(a)) from the line that connects (L1, 1) and (LN , N)
is selected as the initial threshold. Visually, this is the inflection
point of the lifetime CDF curve (Figure 3(a)). The intuition
behind this method is that the straight line represents a uniform
distribution, and the point at which the distance between it
and the real CDF starts to shrink can represent entrance to a
“long tail”. For other windows, as in Figure 3(b), Shiro starts
by locating the percentile position of the previous window’s
threshold value (prevThres) in the current window, say p.
Shiro then attempts to adjust the classification threshold toward
the direction that can improve prediction accuracy. This is
done by testing three candidate thresholds at the (p− step)th,
pth and (p+ step)th percentile, where step is the adjustment
step in the current training round. Shiro labels the training
data collected in the current window using the three candidate
values to acquire three training sets. The sets are then used to
train three lightweight logistic regression models. All training
sets are resampled to have a balanced class distribution. The
candidate value that produces a logistic regression model
with the highest accuracy, maxThres, is picked as the new
classification threshold. Finally, Shiro refines the adjustment
process by lengthening or shortening the adjustment step:

• If no adjustment to the threshold value has been made in
two consecutive windows, the algorithm increments the
search step to avoid getting trapped in a local optimal.

𝑿𝒕𝑿𝒕−𝟏𝑿𝒕−𝟐𝑿𝒕−𝟑

𝒀𝒕−𝟑 𝒀𝒕−𝟐 𝒀𝒕−𝟏 𝒀𝒕
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output : 2
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Fig. 4. Structure of the Page Classifier model.

• If the threshold value is adjusted in the previous window
but not in the current one, it means we have possibly
stepped over the optimal target. The algorithm thus
decrements the step value.

• If the threshold value is adjusted in different directions
in the previous window and the current one, lower the
search step value to avoid hovering around a potential
optimal value.

• If the same adjustment directions were applied to the
threshold value, we increase the search step value as an
attempt to let the algorithm reach the optimal value faster.

In Section V, we show that the Page Classifier can maintain
high prediction accuracy throughout long user write sequences
in real-world traces.

Feature extraction and model structure. After exploring
a wide variety of machine learning models and input features,
we finalized the Page Classifier to a lightweight sequence
model using a time series of historical access statistics of
the predicted page as features (Figure 4). During our design
iterations, the most recently observed lifetime of a page
(prev_lifetime) was found to be the most descriptive
feature, capable of achieving ∼70% accuracy. The accuracy
can be improved by adding information about the current
I/O request, including request size (io_len) and whether
the request is sequential (is_seq). Here, a write request is
deemed sequential if, together with the current request, the
recent 32 requests cover 128KB or more consecutive data in
sequential order. Locality and workload profile-related features
are also helpful. Such features are captured by recording the
number of recent read/write requests targeting the larger chunk
to which the currently written page belongs (chunk_write
and chunk_read) and the global read/write ratio (rw_rat).
Finally, over 90% accuracy can be obtained by including all
historical information using a time series of the aforemen-
tioned features.

As depicted in Figure 4, Page Classifier uses a gated
recurrent unit (GRU) [27], a sequence model capable of
processing time series data, to learn the labeled input features.
We perform a grid search through different model structure and
hyperparameter settings to land one that provides a balanced
accuracy-computation tradeoff. In the finalized design, the
GRU model uses a single-layer hidden state with 32 neurons.
The hidden state of the last GRU cell is pushed through a fully
connected layer to produce 2 output neurons. Finally, argmax
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TABLE I
STATES USED IN REINFORCEMENT LEARNING-ASSISTED PAGE MIGRATION

Name Number of states Note

Current lifetime 25 Binning: [1, 2), [2, 4), [4, 8), [8, 16)......
Superblock valid page proportion 25 Binning: [0, 0.04), [0.04, 0.08), [0.08, 0.12)......
Superblock type 8 3 types of user superblocks and 5 levels of GC superblocks
Model prediction result 3 Short-living, long-living or unseen
Previous action 6 The page’s previous GC destination with a special state indicating that the page has never been GC’ed

is applied to get the prediction result. For efficient processing,
Shiro breaks numerical inputs into hexadecimal digits and each
digit is used as an input neuron. The number of digits used
for each feature is chosen so that most cases can be handled
without overflow, while not wasting input budget by leaving
large numbers of neurons as 0. The model is trained with the
cross entropy loss function and the Adam optimizer using the
training data collected in the window. After the first window,
the model is trained until convergence. This can be viewed as
bootstrapping the system using offline training sets. In later
windows, the model is trained online for one epoch after each
window using the training data collected in the window.

C. Separating GC-Written Data

To further separate GC-written data for lower runtime WA,
Shiro uses reinforcement learning to steer valid pages to
different destinations while taking feedback from long-term
WA. In this section, we first briefly describe the basic GC
policy used by Shiro, followed by the reinforcement learning-
assisted page migration strategy.

GC triggering. Shiro performs garbage collection at su-
perblock granularity. Both background and foreground garbage
collection are performed, triggered by different free space
watermarks. During system idle time, Shiro initiates a back-
ground garbage collection if the proportion of free superblocks
is below 25%. When handling a write request, foreground
garbage collection is triggered if the proportion of free su-
perblocks is below 5%.

Victim selection. During garbage collection, Shiro uses the
Adjusted Greedy policy given below to compute a score for
each candidate superblock and picks the one with the highest
score as victim:

score =

{
I

1+V T
C

superblocks with short-living pages

I all other superblocks
(1)

where I and V are the proportion of invalid and valid pages in
the superblock, T is the classification threshold, and C is the
elapsed time (number of pages written) since the superblock
was closed.

The rationale of the Adjusted Greedy policy is similar to
the Cost-Benefit policy [3] in that it gives lower priority to
hot pages during GC. The more important purpose of it is
to remedy wrong predictions. Specifically, the denominator in
Equation 1 applies a discount to the final score of short-living
(hot) pages. When there are more valid pages, the discount
factor should be higher since the hidden cost of migrated pages
soon turning invalid is greater, hence the term V . The term
T
C (T at the numerator for normalization) is added so that
for two superblocks with the same number of invalid pages,

the one that was closed earlier has a lower discount factor.
This is because the model may make mistakes, and pages
that are left valid for longer are more likely to have been
mistakenly predicted as short-living. Such “false” short-living
pages should be favored over “true” short-living pages during
GC to remedy wrong predictions.

Reinforcement learning-assisted page migration. For fur-
ther separation of GC writes, Shiro maintains multiple levels
of GC superblocks for pages with different lifetime patterns,
and each level corresponds to a possible destination of valid
pages migrated during GC. As a result, each valid page to be
migrated in a GC operation has multiple possible destinations.
The goal when deciding the correct migration destination is to
minimize write amplification in the long term. Although a rich
set of runtime information can be collected to for each page
(e.g., the page’s current lifetime, the Page Classifier’s predic-
tion result), it is non-trivial to establish a causal relationship
with future WA. To this end, Shiro uses reinforcement learning
to steer valid data to the destination that is most likely to yield
the lowest write amplification in the future. Reinforcement
learning is well suited for this task since by training the agent
continuously with a trial and error-like approach, the agent can
dynamically map a given environment to an optimal action
that maximizes future reward [28], [29]. In the specific task
we have at hand, the page-specific information represents the
environment, the migration destination corresponds to the ac-
tion, and future reward can be set as lower write amplification.

Specifically, Shiro uses the Q-learning algorithm [30],
which models external environment with discrete states, and
tracks the expected reward of all actions under each com-
bination of states using the Q-table. The key to effective
RL-based decision making for page migration is thus the
construction of an expressive state space to characterize each
page and a reward function that can guide the agent toward
the lower WA over the long term. We empirically select
a rich set of runtime information to build the state space
(Table I). The most important metric in the state space is the
current lifetime of the page. This is used so that pages with
different observed lifetimes are mapped to different states,
allowing the RL agent to take different actions for pages
falling into different lifetime ranges. The feature of the page’s
belonging superblock is also helpful because such information
allows the RL agent to distinguish pages from superblocks
with different runtime characteristics. Finally, we also add the
Page Classifier’s prediction result and the RL agent’s previous
action as potential hints for future actions.

For the reward function, we use the average proportion of
invalid pages in the victim superblocks of the subsequent 200
GC operations. As a result, a higher reward corresponds to
lower WA from GC, thus capturing the impact of an action
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Fig. 5. Off-critical path prediction. S: command submission, D: DMA
transmission, C: command completion, P: prediction, F: flash write back;
arrow indicates dependency.

on long-term WA. Implementation-wise, we use the ϵ-greedy
policy with a 1% exploration probability. Since the Q-table is
small in size (439KB in total), we store the Q-table entirely
in the on-device RAM for faster access. To kickstart the
reinforcement agent, we initialize the Q-table to represent
a simple hierarchical page migration strategy to avoid high
WA when the agent has not been fully trained. Specifically,
we initialize the reward values such that pages from user
superblocks will be migrated to the GC superblocks in the
lowest level, and that pages from GC superblocks will be
migrated to a higher level. This is based on the heuristic
that pages GC’ed for more times are more likely to be long-
living, and grouping them to dedicated superblocks can avoid
repeated data copies of (approximately) read-only data.

D. Enabling learning-based decision making inside the SSD

The majority of runtime overhead, both computation and
storage, stems from the Page Classifier. To integrate the
Page Classifier into the resource-constrained SSD, we propose
a suite of enabling techniques. For computation overhead,
Shiro removes prediction from the critical path and caches
intermediate computation results (the hidden state) to reduce
prediction complexity. For storage overhead, Shiro maintains
ML metadata (the cached hidden state and feature extraction
information) in flash and only keeps a small on-demand
metadata cache in RAM.

Reducing computation cost. In NVMe, the de-facto stan-
dard for high-performance SSDs, the write command (64B)
and data payload (usually in 4KB blocks) are transferred
separately, and the latter is more time-consuming due to
larger size. Specifically, the host initiates a write request by
submitting an NVMe write command to the submission queue
(“S” in Figure 5). When the SSD receives the command, it
transfers the data payload from host memory to the device
through the DMA engine (“D” in Figure 5). Afterwards, the
device pushes an entry to the completion queue, marking the
completion of the request (“C” in Figure 5). Writeback of the
transferred payload to flash can be performed asynchronously
(“F” in Figure 5).

This I/O process allows two optimizations that can mask
prediction overhead from the host’s perception: (1) Paral-
lelized prediction. Shiro takes advantage of the multi-core ar-
chitecture in modern SSD controllers by offloading Page Clas-
sifier to a dedicated core. This design allows prediction,
command processing, and payload transfer to run in parallel,
as all input features are available immediately upon receiving
a write command. Consequently, the prediction process does
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not delay the handling of subsequent I/O commands and other
internal FTL tasks. Moreover, the overhead of prediction for
the current request is effectively masked by the payload trans-
fer latency (denoted as “P” in Figure 5). This ensures that the
latency experienced by the host remains low, maintaining high
responsiveness. (2) Decoupled command completion. Since the
result of prediction is only required when a page is about
to be evicted to flash, Shiro decouples NVMe I/O command
completion from model prediction. A write command can be
marked as successfully completed once the payload reaches
the DMA buffer in RAM, irrespective of whether the predic-
tion process is finished. When the page is eventually flushed
to flash, the prediction result is retrieved asynchronously. As
demonstrated in Section V, this off-critical-path prediction
technique effectively masks nearly all prediction overhead in
our prototype implementation, ensuring minimal impact on
system performance.

It is also necessary to address the high computation over-
head of the sequence model due to long feature sequences. As
shown in Figure 4, the model iteratively performs computation
for the (very long) feature sequence of a page to draw a
single prediction. Such computation overhead is unacceptable
for real-time prediction. However, we observe that the feature
sequences of a given page at two consecutive writes only differ
in the last time step. Based on this observation, for every page,
Shiro caches the hidden state of the last GRU cell (Ht) after
each prediction. Upon prediction for a page, Shiro retrieves the
cached hidden state. Together with the new input features as
described in Section III-B, the model can yield the final result
in a single step. The computation complexity of prediction is
thus reduced from O(N) to O(1), where N is the length of
the feature sequence. This allows us to take full advantage of
the sequence model without costly iterative computation.

Reducing storage cost. In addition to the cached hidden
state (32B for 8-bit quantized model) for each page, Shiro
also needs to record per-page write timestamp (4B) for lifetime
calculation. This leads to 36B of ML metadata for each page,
which is usually unacceptable in commercial products. To
reduce RAM consumption, Shiro stores these metadata in flash
and maintains an on-demand metadata cache in RAM.

As shown in Figure 6, pages at the tail of a superblock are
meta pages and store the ML metadata for each data page
in the superblock. A meta page contains metadata entries for
consecutive data pages in the superblock. Each time the model
performs prediction for a logical page (LPN), its metadata
are retrieved by first looking up the PPN of its corresponding
data page in the L2P table. The address of the desired meta

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3586891

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 18,2025 at 01:30:04 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

page (MPPN) can be calculated using the offset of the data
page in the superblock. The MPPN is then used to search
the metadata cache in RAM, which is indexed by a red-
black tree. If the MPPN is found in the metadata cache, the
requested metadata can be fetched directly from RAM, without
incurring flash I/O. In the event of a cache miss, the meta
page is read from flash and then inserted to the metadata
cache. Since consecutive pages in the superblock are also
allocated consecutively, the retrieved metadata entries have
inherent locality. If the metadata cache is full, a slot is emptied
following the LRU policy. The size of the metadata cache is
set to 1% of the number of meta pages in the SSD. This cuts
metadata RAM consumption to 0.36 bytes per page, which we
believe is an acceptable cost. Besides the meta pages, each data
page also keeps a copy of its metadata in the per-page OOB
area so that during GC there is no need to read the meta pages
for metadata migration.

IV. SHIRO IMPLEMENTATION

We build a Shiro prototype on the Daisy+ OpenSSD
(Daisy+ hereafter) [31], an SSD evaluation platform based on
real hardware. Daisy+ is the latest iteration of the OpenSSD
project, which has powered many studies on SSDs in recent
years [7], [32]–[35]. Daisy+ is equipped with a Xilinx Zynq
UltraScale+ SoC, which consists of a hard-wired quad-core
ARM Cortex-A53 processor and a programmable FPGA. The
ARM processor has access to 2GB LPDDR4 DRAM, serving
as scratchpad memory for the firmware. Another 64GB (2×
32GB) of DDR4 DRAM in DIMM form factor is used as the
storage backend, where host-written data reside. The host is
connected to Daisy+ via NVMe over PCIe 3.0 ×8.

We first extend the firmware of Daisy+ to integrate NAND
flash emulation since Daisy+ uses DRAM as the storage
media. Besides storage media differences, the stock firmware
that came with Daisy+ also lacks integral FTL functionalities.
Out of the box, the firmware uses a direct mapping between the
memory address space of the on-board DIMMs and the block
address space exposed to the host. Host I/Os in the form of
NVMe commands directly access data in the corresponding
DIMM address ranges through PCIe DMA. There is therefore
no “flash translation” involved. We thus port FEMU’s page-
level FTL [36] for its flash emulation capability. The stock
firmware only uses one ARM processor core to process NVMe
commands. We bring up a dedicated core to run the FTL
logic. The resulting architecture thus has a separated data
plane and control plane: Host I/O data are directed to the
DDR4 DIMMs, as in the stock firmware, but the completion of
NVMe commands is now handled by the FTL, which simulates
NAND flash behavior with configurable flash chip layout and
read/program/erase latencies.

This architecture allows us to evaluate SSDs with differ-
ent logical sizes, regardless of physical hardware limitation.
Specifically, we match the emulated flash layout with the size
of the device used by the traces (Table III). The logically
emulated flash size need not be the same as the physical size of
the DRAM backend. When conducting a trace replay, we cap
addresses that fall out of the DRAM address space. The real

LBA is embedded in a reserved field of the NVMe command.
The FTL can then extract the real LBA from the command and
correctly calculate the incurred flash operation latency. Com-
pared to a pure emulator-based approach, our implementation
can more accurately capture the performance implications of
host-device communications since data transfers still happen
via the hardware PCIe interface.

Upon the NAND-enabled Daisy+, we further add Shiro
components. We use another dedicated core to run the
Page Classifier. The GRU model is implemented in C from
scratch. Since GRU mainly involves basic tensor computa-
tions such as matrix/vector multiplications, we take advan-
tage of SIMD instructions (the ARM NEON extension [37])
to speed up model inference on the ARM processor. Note
that modern ARM controllers that target high-performance
storage applications (such as Cortex-R82 [38]) also pack
SIMD extensions. To further boost inference performance,
we quantize model parameters to 8-bit integers. The loss of
accuracy from quantization is within 1%. After quantization,
a NEON instruction can process up to 16 neurons at a time
with its 128-bit vector registers [37], significantly boosting
the model’s responsiveness. The inference process of GRU
also involves heavy algebraic computations, most notably the
sigmoid and tanh functions. We prepare a look-up table for
each algebraic function at runtime so that computation can
be finished with a simple table look up. The look-up tables
are negligible in size since the quantized neurons are only
8-bit long. With the above optimizations, the overhead of a
single prediction is brought down to 3.4µs, corresponding to a
4.48GB/s throughput given 16KB flash pages, regardless of the
SSD’s capacity. For our evaluation platform, this is more than
fast enough since the maximum host-to-device bandwidth is
measured at around 3.7GB/s (without NAND flash emulation).
For future faster SSDs (e.g., PCIe 5.0 SSDs), prediction can be
accelerated by using techniques such as multi-thread inference
or a specialized hardware accelerator. At the host side, we
implement the Model Trainer using PyTorch. Across the host
and the device, the implementation of Shiro totalled 8189 lines
of C and Python code.

V. EVALUATION

In this section, we present the experiment results of Shiro
and baseline data separation schemes. Our evaluation seeks to
answer the following questions:

• Q1. How well can Shiro reduce WA from GC compared
with state-of-the-art in-storage data separation schemes?

• Q2. Can the Page Classifier accurately predict page
lifetime and adapt to changing application patterns in
real-world workloads?

• Q3. Can further separation of GC writes benefit WA
reduction compared with only separating user writes?

• Q4. Is the runtime overhead of performing ML model
training and prediction acceptable?

• Q5. Does the reduction in GC WA translate into tangible
gains in I/O bandwidth and latency?
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TABLE II
EVALUATION SYSTEM CONFIGURATIONS.

Platform Item Configuration

Host
CPU 2× Intel Xeon Gold 6240
Memory 384GB DDR4
OS Ubuntu 22.04 LTS (Linux 6.8.0)

Device

CPU 4× Cortex-A53 @ 1.5GHz
Memory 2GB LPDDR4
Host interface NVMe over PCIe 3.0 ×8
Storage backend 2× 32GB DDR4 DIMM
Flash latency 40µs read, 200µs program, 2ms erase

TABLE III
FLASH CHIP LAYOUT FOR CONFIGURED CAPACITIES.

Flash layout Configured logical capacity
40GB 50GB 100GB 500GB

Pages per block 256 256 512 1024
Blocks per die 171 214 214 535
Dies per channel 8 8 8 8
Number of channels 8 8 8 8

A. Evaluation Setup

Dataset. We conduct our experiments using an open-source
dataset of block traces from Alibaba Cloud [25]. This dataset
includes block-level traces collected over a one-month period
from 1,000 drives randomly sampled from a production cluster.
To accurately assess WA caused by garbage collection, it is
essential for the workload’s total write size to be sufficiently
large. Therefore, we select drives that went through more than
20 drive writes (i.e., 20 times the drive’s capacity) during the
trace period and use the first 20 drive writes in the traces
for evaluation. A total of 20 drives out of the 1,000 met this
criterion. Table IV shows the workload characteristics of the
tested traces.

Methodology. To answer Q1, we implement MiDAS [6],
SepBIT [5] and 2R [7] on our NAND-enabled Daisy+ and
evaluate Shiro against them. We also evaluate the case where
no data separation is performed (Base). For baselines that
did not specify a victim selection policy, Cost-Benefit [3] is
used. We run the traces on our evaluation platform and report
the resulting WA. To answer Q2, we preprocess the traces
to annotate the real lifetime of each page. This allows us to
evaluate the accuracy of the Page Classifier at runtime. To
answer Q3, we perform an ablation study of Shiro and baseline
systems to investigate the contribution of user and GC data
separation to the final performance results. To answer Q4 and
Q5, we run microbenchmark as well as the Alibaba Cloud
traces on Daisy+ running Shiro and baseline FTLs. I/O latency
and bandwidth during the process are reported.

Testbed. Full configurations of our testbed are listed in
Table II. As discussed in Section IV, our implementation
on Daisy+ with separated data and control planes allows us
to configure an emulated SSD capacity different from that
physically available. Therefore, for each trace in the dataset,
we set the logical capacity of the SSD to match that specified
by the dataset. We couple each tested logical capacity with
a flash layout that provides 7% over provisioning. Detailed
flash chip layout for all evaluated logical capacities is given
in Table III. The number of dies and channels are kept the
same for all configurations to provide the same level of I/O

TABLE IV
I/O CHARACTERISTICS AND TESTED TRACES.

Trace ID Drive size
(GB)

Write size
(GB)

Read size
(GB)

Avg. write size
(KB)

Avg. read size
(KB)

52 500 20378 97 72.74 32.97
58 500 33110 222 92.38 34.04

107 500 26329 123 81.24 29.80
141 500 27762 147 83.96 35.01
144 500 33436 397 90.90 59.04
178 500 23182 111 76.96 32.12
225 500 36210 252 47.67 34.58
177 100 8280 244 25.19 14.98
202 100 2104 0 276.09 4.00
316 100 4160 0 342.54 4.00
721 100 5832 1061 156.65 205.41
748 100 4674 108 303.05 58.46
38 50 13975 0 13.91 20.47

126 50 1332 0 63.58 15.72
132 50 1912 0 151.87 382.67
223 40 1562 18 131.01 23.77
228 40 842 0 8.45 12.02
277 40 12310 3 21.73 152.97
326 40 1551 4 160.56 26.00
679 40 9769 0 14.16 19.58

concurrency. We use 16KB page for all configurations. The
size of the DMA buffer is set to 2MB (2 superpages) to align
with typical commercial SSDs [39].

B. Write Amplification

Figure 7 illustrates the write amplification factor (WAF)
of the tested traces under various data separation schemes.
The WAF is computed as (F − U)/U , where F and U are
the sizes of data written to flash and that written by the
host, respectively. On average, Shiro reduces the overall WA
by 67.6% compared with Base and 17.1%-58.0% compared
with rule-based schemes. In Base, where no data separation is
implemented, pages with different lifetimes are mixed within
the same superblocks. During garbage collection, long-living
pages contain valid data and must be relocated, resulting in
high WA. 2R performs data separation by separating GC
writes from user writes, based on the heuristic that valid
pages during GC are likely to have longer lifetimes. SepBIT
and MiDAS goes further by classifying user-written and GC-
written pages into multiple levels according to their previ-
ous lifetimes [5] or the modelled lifetime distribution [6].
However, their rule-based heuristics offer limited accuracy,
restricting their effectiveness in reducing WA. In contrast,
Shiro offers better accuracy and adaptiveness using learning-
based decision making, allowing it to achieve the lowest WA.

We therefore have the answer to Q1: On real-world traces,
Shiro can significantly reduce WA compared with conventional
FTLs and state-of-the-art in-storage data separation schemes.

C. Page Classifier Performance

Table V summarizes the inference performance metrics of
Page Classifier across the tested traces. The model achieves
an accuracy of 81.4%–98.7%, with an average of 90.9%. The
F1 score (the harmonic average of precision and recall) ranges
from 21.3% to 98.3%, averaging 86.7%. Trace #38 is the only
case with an F1 score below 70%, but this trace inherently
exhibits low WA, minimizing its impact. The model’s strength
lies in its ability to leverage prolonged historical patterns to
predict page lifetime. When the feature sequence length is
truncated to a single entry, prediction accuracy drops by as
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TABLE V
PAGE CLASSIFIER PERFORMANCE ON ALIBABA CLOUD TRACES

Trace ID #52 #58 #107 #141 #144 #178 #225 #177 #202 #316 #721 #748 #38 #126 #132 #223 #228 #277 #326 #679 Average

Accuracy 0.894 0.826 0.852 0.898 0.844 0.879 0.814 0.972 0.969 0.957 0.937 0.832 0.874 0.863 0.907 0.951 0.979 0.971 0.987 0.968 0.909
Precision 0.933 0.837 0.869 0.937 0.872 0.909 0.823 0.824 0.980 0.984 0.772 0.897 0.213 0.792 0.931 0.967 0.892 0.969 0.672 0.606 0.834
Recall 0.938 0.932 0.944 0.940 0.925 0.942 0.934 0.944 0.988 0.972 0.897 0.907 0.664 0.675 0.969 0.979 0.972 0.987 0.965 0.947 0.921
F1 0.935 0.882 0.905 0.938 0.898 0.925 0.875 0.880 0.984 0.978 0.830 0.902 0.323 0.729 0.950 0.973 0.930 0.978 0.792 0.739 0.867
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Fig. 8. Page Classifier prediction accuracy over time (cumulative).

much as 9.2% (4.0% on average), underscoring the importance
of historical context. This predictive accuracy is a critical
factor contributing to Shiro’s effectiveness in separating data
and reducing WA.

In Figure 8, we show the evolution of the Page Classifier’s
prediction accuracy over time for 8 of the tested traces (for
each drive size, we show the trace with the highest/lowest
WA). Although in some traces the Page Classifier starts off
with relatively low prediction accuracy (73.1% for trace #721),
online runtime training and adaptive data labeling allow the
Page Classifier to continuously adapt to workload patterns.
As a result, the Page Classifier can achieve high prediction
accuracy as the drive enters steady state in most cases.

As such, we are able to answer Q2: The Page Classifier
can accurately predict the lifetime of user-written data in
real-world workloads.

D. Effectiveness of Separating GC Writes

In this experiment, we analyze the contribution to the reduc-
tion of WA from user data separation and GC data separation.
Figure 9 shows the WA of the Alibaba Cloud traces (each box
plot includes all 20 traces), and systems with the suffix “-NG”
have their respective GC data separation removed. 2R does
not have an “-NG” counterpart because it does not perform
further separation for GC data. From the results we see that by
separating user writes, SepBIT-NG, MiDAS-NG and Shiro-NG
provide lower WA compared with Base, with Shiro-NG being
the best performer. This shows that the Page Classifier can
achieve better data separation accuracy compared with rule-
based approaches. When GC writes are further separated in
their full implementations, all evaluated systems exhibit further
performance improvements, confirming the benefit of GC data
separation on top of user data separation.

Therefore, we conclude for Q3: Combining supervised
learning for user data separation and reinforcement learning
for GC data separation can deliver significant reduction in WA.
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Fig. 9. WA on Alibaba Cloud traces with GC/user data separation disabled.
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Fig. 10. Impact of Page Classifier prediction overhead on I/O latency.

E. Machine Learning Overhead

Training and prediction overhead. Runtime overhead
from ML mainly comes from the Page Classifier, since re-
inforcement learning does not require much computation. In
terms of training, we use the host server’s CPU to train the
Page Classifier at runtime. As discussed in Section III, the
model is trained for one epoch in each write window, which
is 5% of the drive size. Given a 500GB SSD with 16KB pages,
this corresponds to a maximum of 1.7M samples. Each time
step in a sample is 24B, and we cap the length of a sample
series to 20. The maximum size of a training set is therefore
aroud 800MB. In practice, the average size is 120MB for
500GB drives. The host also needs to track the lifetime of
logical flash pages, which takes up 125MB per 500GB flash
(for high-performance enterprise SSDs with 4KB pages, the
memory overhead increases by 4×). To speed up training, we
sample 10% of the collected data to train the model (loss of
accuracy is negligible). On our testbed, training the model
for one epoch takes less than one second, which is negligible
compared to the duration of a write window in real-world
workloads (minutes to hours).

To analyze the overhead of performing real-time prediction
inside the SSD, we use fio to issue random write requests in
different sizes and measure the latency of the requests. Only
write is tested here because reads do not trigger prediction.
We use a 500GB drive and direct the write requests to a
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Fig. 11. I/O bandwidth and latency on high-WA traces.
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Fig. 12. I/O bandwidth and latency on low-WA traces.

fixed 10GB region prefilled with valid data so that all write
requests can trigger prediction. To test the effectiveness of the
proposed off-critical path prediction techniques, we test the
scenario where prediction is placed on the critical path by
using 1 core to handle both NVMe command processing and
model inference (Shiro-sync). We also evaluate the case where
4KB logical pages are used by the FTL (suffixed with “4KB”).

Figure 10 presents the results (error bars indicate standard
deviation; Y axis uses logarithmic scaling). In Shiro-sync,
prediction affects I/O latency significantly under a single
thread, with a 22.9% increase on average. When 4KB pages
are used, the gap widens to 104%, since each write request
triggers more predictions. The extra latency is proportional to
the size of the request because the model performs prediction
for all logical pages covered by the request. With 32 threads,
Shiro-sync and Shiro-sync-4KB also exhibit higher latency
when the size of the request cannot saturate device bandwidth.
When we take prediction off the critical path (Shiro), average
latency returns to normal and is almost the same as the
stock FTL (Base), regardless of request size, number of I/O
threads and the logical page size in use. This confirms the
effectiveness of off-critical path prediction techniques. The
standard deviation of I/O latency is slightly higher in Shiro
than in Base because of occasional synchronization between
the two cores and more cache line misses due to sharing.

Metadata overhead. As discussed in Section III, the RAM
overhead of the metadata cache is 0.36B per page. If a page’s
ML metadata is not found in the cache, a flash read operation
is required to fetch it. When replaying the traces in Figure 7,
only 0.1%–1.8% of metadata retrievals triggerred flash reads.
This is due to the grouping and batch fetching of metadata in
flash and, which benefits from temporal and spatial locality.
In the worst case scenario (uniform random writes with a
working set spanning the entire SSD), metadata fetching leads
to a 19% decrease in write throughput. However, we did not
encounter such workloads in any of the tested traces. Even if
host I/Os follow the worst-case pattern, it is easy to avoid the
performance drop by, for example, monitoring the hit rate of

the metadata cache and disabling data separation when unusual
I/O patterns are detected.

At this point, we can answer Q4: ML model training and
prediction do not pose significant runtime overhead.

F. Impact on I/O Performance

To analyze the impact of WA reduction on I/O bandwidth
and latency, we replay the Alibaba Cloud traces on Daisy+
with Shiro and baseline schemes. The results are presented
in Figure 11 and Figure 12. Due to space limit, we show
the results of the traces with the highest/lowest WA for each
tested drive size. A trace with high WA allows us to analyze
the performance gains from lower GC overhead, whereas a
trace with low WA reveals the impact of ML overhead on
performance. We break the trace replay into 2 phases. In phase
1, we ignore the timestamps of the I/O requests and stress
load the trace data (except the last hour) into the SSD. This
allows us to analyze the bandwidth of different data separation
schemes under real-world I/O patterns. In phase 2, we follow
the timestamps in the trace file and replay the last-hour trace
data. This gives us meaningful I/O latency distributions of
real-world applications.

As shown in Figure 11, when the trace exhibits high WA,
Shiro can deliver tangible gains in I/O bandwidth and latency
by lowering GC overhead. In phase 1, Shiro has slightly
lower bandwidth than Base and rule-based data separation
schemes in earlier drive writes. However, after the 5th drive
write, WA reduction starts to take effect, and the bandwidth of
Shiro surpasses that of the baseline systems. During the last
drive write, Shiro can provide up to 43.2% and 20.5% higher
bandwidth compared with the stock firmware and rule-based
schemes. In phase 2, Shiro and the stock FTL have almost
the same latency distribution (within 5% discrepancy) at low
percentiles. At high percentiles, thanks to lower GC overhead,
lower GC overhead significantly reduces tail latencies in Shiro,
contributing to up to 51.2% reduction in average I/O latency.

When the trace does not have WA in the first place, data
separation does not have a material impact on I/O performance
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(Figure 12). Although some slight improvements are observed
at high-percentile latency, the overall average latency and
bandwidth latency remain similar. Nevertheless, this again
shows that the added components in Shiro does not lead to
visible runtime overhead.

Hence, the answer to Q5 is clear: Accurate data separation
can provide substantial improvement in steady-state I/O
bandwidth and latency by reducing WA from GC.

VI. RELATED WORK

Optimizing GC. Shiro uses ML to perform data separa-
tion inside the SSD to reduce WA from GC. With fewer
valid pages, GC itself is accelerated. Other data separation
schemes, including rule-based [5], [7]–[9] and learning-based
approaches [13], [14], have been discussed in earlier sections.
Researchers have also taken on other fronts to tackle GC
and WA, and works under such topics are complementary to
Shiro. First, SSDs in production environment often adopt data
redundancy for reliability. There are therefore opportunities
to ”unblock” host I/Os during GC, such as using erasure
codes internally [40] or in an SSD array [21]. Furthermore,
prioritizing host I/Os over GC is effective in improving I/O
performance. Kang et al. [41] proposed breaking a full GC to
partial GCs and using RL to determine the optimal number
of partial GCs under heavy workloads. PEN [42] further
introduces partial erase at the hardware level. Finally, data
deduplication [43]–[46] can also improve GC since less data
written to flash is equivalent to a higher OP ratio.

Prolonging device lifespan. NAND flash is known to suffer
from degraded performance as more data are written to it,
eventually leading to device wearout [1]. Shiro attacks this
problem by reducing WA from GC writes to delay wearout
due to excessive writes. Other studies that target the lifespan
issue of SSDs focus on hardware-level causes of wearout,
including mitigating read disturbance [47], [48], data retention
handling [49]–[51] and advanced wear levelling strategy [19],
[52], [53]. Since GC is an inevitable operation for NAND flash
due to its log-structured nature, Shiro can work in tandem such
solutions to provide optimal device lifespan.

Exploiting in-storage computing resources. Shiro uses the
SSD’s computing resources for data separation to reduce WA.
As SSD controller becomes more powerful, recent studies
have also proposed running user application logic directly
in storage. Such a paradigm is referred to as computational
storage (CS) [54]. Prior works on CS system include domain-
specific architectures such as information retrieval [32], neural
network training [34], [55] and data analysis in HTAP [56],
and generic CS frameworks offering programming models
based on block [57], [58] or file interfaces [35], [59], [60].
CS improves the performance of offloaded tasks by shortening
the I/O path, which is particularly effective in I/O-intensive
applications. In comparison, our evaluation confirms that Shiro
can provide higher I/O performance by reducing GC overhead,
thus also benefiting host applications.

VII. CONCLUSION

In this paper, we introduce Shiro, a novel approach that
employs machine learning techniques for data lifetime sep-

aration inside the storage device, targeting both user writes
and GC writes. To implement the proposed scheme efficiently,
we present a set of optimization techniques that minimize
computation and storage overhead, making it feasible for
SSD integration. Experimental comparisons with state-of-the-
art data separation methods demonstrate that Shiro achieves
significantly lower write amplification. Additionally, trace I/O
evaluations confirm that Shiro is a practical solution, offering
substantial improvements in application I/O performance.

ACKNOWLEDGMENT

This work is supported by National Key Research and De-
velopment Program of China (Grant No. 2023YFB4502902),
National Natural Science Foundation of China (NSFC) (Grant
No. 62332012, 62227809, 62302290), the Fundamental Re-
search Funds for the Central Universities, and Alibaba Group
through the Alibaba Innovative Research (AIR) program.

REFERENCES

[1] A. Tai, A. Kryczka, S. O. Kanaujia, K. Jamieson, M. J. Freedman, and
A. Cidon, “Who’s afraid of uncorrectable bit errors? online recovery
of flash errors with distributed redundancy,” in 2019 USENIX Annual
Technical Conference (USENIX ATC 19), 2019, pp. 977–992.

[2] S. Maneas, K. Mahdaviani, T. Emami, and B. Schroeder, “Operational
characteristics of ssds in enterprise storage systems: A large-scale field
study,” in 20th USENIX Conference on File and Storage Technologies
(FAST 22), 2022, pp. 165–180.

[3] M. Rosenblum and J. K. Ousterhout, “The design and implementation of
a log-structured file system,” ACM Transactions on Computer Systems
(TOCS), vol. 10, no. 1, pp. 26–52, 1992.

[4] J. He, S. Kannan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“The unwritten contract of solid state drives,” in Proceedings of the
twelfth European conference on computer systems, 2017, pp. 127–144.

[5] Q. Wang, J. Li, P. P. Lee, T. Ouyang, C. Shi, and L. Huang, “Separating
data via block invalidation time inference for write amplification reduc-
tion in log-structured storage,” in 20th USENIX Conference on File and
Storage Technologies (FAST 22), 2022, pp. 429–444.

[6] S. Oh, J. Kim, S. Han, J. Kim, S. Lee, and S. H. Noh, “{MIDAS}:
Minimizing write amplification in {Log-Structured} systems through
adaptive group number and size configuration,” in 22nd USENIX
Conference on File and Storage Technologies (FAST 24), 2024, pp.
259–275.

[7] M. Kang, S. Choi, G. Oh, and S.-W. Lee, “2r: Efficiently isolating cold
pages in flash storages,” Proceedings of the VLDB Endowment, vol. 13,
no. 12, pp. 2004–2017, 2020.

[8] E. Rho, K. Joshi, S.-U. Shin, N. J. Shetty, J. Hwang, S. Cho, D. D. Lee,
and J. Jeong, “Fstream: Managing flash streams in the file system,” in
16th USENIX Conference on File and Storage Technologies (FAST 18),
2018, pp. 257–264.

[9] T. Kim, D. Hong, S. S. Hahn, M. Chun, S. Lee, J. Hwang, J. Lee, and
J. Kim, “Fully automatic stream management for multi-streamedssds
using program contexts,” in 17th USENIX Conference on File and
Storage Technologies (FAST 19), 2019, pp. 295–308.

[10] M. Maas, D. G. Andersen, M. Isard, M. M. Javanmard, K. S. McKinley,
and C. Raffel, “Learning-based memory allocation for c++ server
workloads,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 541–556.

[11] C. Li, M. Wu, Y. Liu, K. Zhou, J. Zhang, and Y. Sun, “Ss-lru: a smart
segmented lru caching,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, 2022, pp. 397–402.

[12] J. Zhang, X. Li, X. Zhou, M. Yuan, Z. Cheng, K. Huang, and Y. Li,
“L-qoco: learning to optimize cache capacity overloading in storage
systems,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, 2022, pp. 379–384.

[13] C. Chakraborttii and H. Litz, “Reducing write amplification in flash by
death-time prediction of logical block addresses,” in Proceedings of the
14th ACM International Conference on Systems and Storage, 2021, pp.
1–12.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3586891

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 18,2025 at 01:30:04 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

[14] P. Yang, N. Xue, Y. Zhang, Y. Zhou, L. Sun, W. Chen, Z. Chen, W. Xia,
J. Li, and K. Kwon, “Reducing garbage collection overhead in ssd based
on workload prediction,” in 11th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 19), 2019.

[15] J. Zhang, M. Kwon, D. Gouk, S. Koh, C. Lee, M. Alian, M. Chun, M. T.
Kandemir, N. S. Kim, J. Kim et al., “Flashshare: Punching through
server storage stack from kernel to firmware for ultra-low latency
ssds,” in 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), 2018, pp. 477–492.

[16] J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal, “Rearchitecting
linux storage stack for µs latency and high throughput,” in 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21), 2021, pp. 113–128.

[17] “Marvell ssd controllers,” https://www.marvell.com/products/ssd-
controllers.html.

[18] P. Sun, L. You, S. Zheng, W. Zhang, R. Ma, J. Yang, G. Wang,
F. Zhu, S. Li, and L. Huang, “Learning-based data separation for write
amplification reduction in solid state drives,” in 2023 60th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2023, pp. 1–6.

[19] S. Wang, F. Wu, C. Yang, J. Zhou, C. Xie, and J. Wan, “Was: Wear aware
superblock management for prolonging ssd lifetime,” in Proceedings of
the 56th Annual Design Automation Conference 2019, 2019, pp. 1–6.

[20] M. Hao, L. Toksoz, N. Li, E. E. Halim, H. Hoffmann, and H. S. Gunawi,
“Linnos: Predictability on unpredictable flash storage with a light neural
network,” in 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), 2020, pp. 173–190.

[21] H. Li, M. L. Putra, R. Shi, X. Lin, G. R. Ganger, and H. S. Gunawi,
“Ioda: A host/device co-design for strong predictability contract on
modern flash storage,” in Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, 2021, pp. 263–279.

[22] J. Yang, R. Pandurangan, C. Choi, and V. Balakrishnan, “Autostream:
Automatic stream management for multi-streamed ssds,” in Proceedings
of the 10th ACM International Systems and Storage Conference, 2017,
pp. 1–11.

[23] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho, “The multi-streamed solid-
state drive,” in 6th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 14), 2014.

[24] M. Bjørling, A. Aghayev, H. Holmberg, A. Ramesh, D. Le Moal, G. R.
Ganger, and G. Amvrosiadis, “Zns: Avoiding the block interface tax
for flash-based ssds,” in 2021 USENIX Annual Technical Conference
(USENIX ATC 21), 2021, pp. 689–703.

[25] J. Li, Q. Wang, P. P. Lee, and C. Shi, “An in-depth analysis of
cloud block storage workloads in large-scale production,” in 2020
IEEE International Symposium on Workload Characterization (IISWC).
IEEE, 2020, pp. 37–47.

[26] G. Yadgar, M. Gabel, S. Jaffer, and B. Schroeder, “Ssd-based workload
characteristics and their performance implications,” ACM Transactions
on Storage (TOS), vol. 17, no. 1, pp. 1–26, 2021.

[27] K. Cho, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[28] W. Kang and S. Yoo, “Dynamic management of key states for reinforce-
ment learning-assisted garbage collection to reduce long tail latency in
ssd,” in Proceedings of the 55th Annual Design Automation Conference,
2018, pp. 1–6.

[29] Q. Wei, Y. Li, Z. Jia, M. Zhao, Z. Shen, and B. Li, “Reinforce-
ment learning-assisted management for convertible ssds,” in 2023 60th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2023, pp.
1–6.

[30] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[31] “Daisy+ openssd,” https://www.crz-tech.com/crz/article/DaisyPlus/.
[32] S. Liang, Y. Wang, Y. Lu, Z. Yang, H. Li, and X. Li, “Cognitive ssd:

A deep learning engine for in-storage data retrieval,” in 2019 USENIX
Annual Technical Conference (USENIX ATC 19), 2019, pp. 395–410.

[33] M. Wilkening, U. Gupta, S. Hsia, C. Trippel, C.-J. Wu, D. Brooks,
and G.-Y. Wei, “Recssd: near data processing for solid state drive
based recommendation inference,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2021, pp. 717–729.

[34] Y. Lee, J. Chung, and M. Rhu, “Smartsage: training large-scale
graph neural networks using in-storage processing architectures,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, 2022, pp. 932–945.

[35] Z. Yang, Y. Lu, X. Liao, Y. Chen, J. Li, S. He, and J. Shu, “λ-io: A
unified io stack for computational storage,” in 21st USENIX Conference
on File and Storage Technologies (FAST 23), 2023, pp. 347–362.

[36] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and H. S.
Gunawi, “The case of femu: Cheap, accurate, scalable and extensible
flash emulator,” in 16th USENIX Conference on File and Storage
Technologies (FAST 18), 2018, pp. 83–90.

[37] “Neon,” https://developer.arm.com/Architectures/Neon.
[38] “Cortex-r82,” https://developer.arm.com/Processors/Cortex-R82.
[39] S.-H. Kim, J. Shim, E. Lee, S. Jeong, I. Kang, and J.-S. Kim, “Nvmevirt:

A versatile software-defined virtual nvme device,” in 21st USENIX
Conference on File and Storage Technologies (FAST 23), 2023, pp.
379–394.

[40] S. Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman, A. A. Chien,
and H. S. Gunawi, “Tiny-tail flash: Near-perfect elimination of garbage
collection tail latencies in nand ssds,” ACM Transactions on Storage
(TOS), vol. 13, no. 3, pp. 1–26, 2017.

[41] W. Kang, D. Shin, and S. Yoo, “Reinforcement learning-assisted garbage
collection to mitigate long-tail latency in ssd,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 16, no. 5s, pp. 1–20, 2017.

[42] C.-Y. Liu, J. Kotra, M. Jung, and M. Kandemir, “Pen: Design and
evaluation of partial-erase for 3d nand-based high density ssds,” in
16th USENIX Conference on File and Storage Technologies (FAST 18),
2018, pp. 67–82.

[43] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam, “Lever-
aging value locality in optimizing nand flash-based ssds,” in 9th
USENIX Conference on File and Storage Technologies (FAST 11),
2011.

[44] F. Chen, T. Luo, and X. Zhang, “Caftl: A content-aware flash translation
layer enhancing the lifespan of flash memory based solid state drives,”
in 9th USENIX Conference on File and Storage Technologies (FAST
11), 2011.

[45] F. Ni, X. Wu, W. Li, L. Wang, and S. Jiang, “Leveraging ssd’s
flexible address mapping to accelerate data copy operations,” in 2019
IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, 2019, pp. 1051–1059.

[46] Y. Zhou, Q. Wu, F. Wu, H. Jiang, J. Zhou, and C. Xie, “Remap-ssd:
Safely and efficiently exploiting ssd address remapping to eliminate
duplicate writes,” in 19th USENIX Conference on File and Storage
Technologies (FAST 21), 2021, pp. 187–202.

[47] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in mlc
nand flash memory: Measurement, characterization, and analysis,” in
2012 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2012, pp. 521–526.

[48] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read disturb errors in mlc nand
flash memory: Characterization, mitigation, and recovery,” in 2015 45th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE, 2015, pp. 438–449.

[49] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “Warm: Improving nand
flash memory lifetime with write-hotness aware retention management,”
in 2015 31st Symposium on Mass Storage Systems and Technologies
(MSST). IEEE, 2015, pp. 1–14.

[50] M.-C. Yang, C.-F. Wu, S.-H. Chen, Y.-L. Lin, C.-W. Chang, and Y.-
H. Chang, “On minimizing internal data migrations of flash devices
via lifetime-retention harmonization,” IEEE Transactions on Computers,
vol. 70, no. 3, pp. 428–439, 2020.

[51] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Improving 3d
nand flash memory lifetime by tolerating early retention loss and process
variation,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 2, no. 3, pp. 1–48, 2018.

[52] J. Li, X. Xu, X. Peng, and J. Liao, “Pattern-based write scheduling
and read balance-oriented wear-leveling for solid state drivers,” in 2019
35th Symposium on Mass Storage Systems and Technologies (MSST).
IEEE, 2019, pp. 126–133.

[53] Z. Jiao, J. Bhimani, and B. S. Kim, “Wear leveling in ssds considered
harmful,” in Proceedings of the 14th ACM Workshop on Hot Topics in
Storage and File Systems, 2022, pp. 72–78.

[54] J. Do, S. Sengupta, and S. Swanson, “Programmable solid-state storage
in future cloud datacenters,” Communications of the ACM, vol. 62, no. 6,
pp. 54–62, 2019.

[55] S. Kim, Y. Jin, G. Sohn, J. Bae, T. J. Ham, and J. W. Lee, “Behemoth:
a flash-centric training accelerator for extreme-scale dnns,” in 19th
USENIX Conference on File and Storage Technologies (FAST 21),
2021, pp. 371–385.

[56] K. Lee, I. Jo, J. Ahn, H. Lee, H. Lee, W. Sul, and H. Jung, “Deploying
computational storage for htap dbmss takes more than just computation
offloading,” Proceedings of the VLDB Endowment, vol. 16, no. 6, pp.
1480–1493, 2023.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3586891

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 18,2025 at 01:30:04 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[57] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De, Y. Jin, Y. Liu,
and S. Swanson, “Willow: A user-programmablessd,” in 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14), 2014, pp. 67–80.

[58] G. Koo, K. K. Matam, T. I, H. K. G. Narra, J. Li, H.-W. Tseng,
S. Swanson, and M. Annavaram, “Summarizer: trading communication
with computing near storage,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, 2017, pp.
219–231.

[59] Z. Ruan, T. He, and J. Cong, “Insider: Designing in-storage computing
system for emerging high-performance drive,” in 2019 USENIX Annual
Technical Conference (USENIX ATC 19), 2019, pp. 379–394.

[60] R. Schmid, M. Plauth, L. Wenzel, F. Eberhardt, and A. Polze, “Accessi-
ble near-storage computing with fpgas,” in Proceedings of the Fifteenth
European Conference on Computer Systems, 2020, pp. 1–12.

Penghao Sun received his M.S. degree from Shang-
hai Jiao Tong University in 2022, and is now a
Ph.D. candidate at Shanghai Jiao Tong University.
His research interests include memory and storage
systems.

Shengan Zheng received the B.S. and Ph.D. degrees
from Shanghai Jiao Tong University in 2014 and
2019, respectively. He is currently an assistant pro-
fessor at Shanghai Jiao Tong University. His research
interests include memory systems, storage systems
and distributed systems.

Litong You received the B.Eng. degree in computer
science from Sichuan University, China, in 2017, and
the Ph.D. degree in computer science from Shanghai
Jiao Tong University. He is currently an Associate
Research Professor with the School of Computer
Science and Technology, Hangzhou Dianzi Univer-
sity, China. His research interests include storage
systems, embedded system, and Industrial Internet
of Things.

Wanru Zhang received her M.S. from Shanghai
Jiao Tong University in 2024, where she studied and
researched SSD-based storage systems.

Ruoyan Ma is currently pursuing his master’s de-
gree at Shanghai Jiao Tong University. His research
interests include machine learning system and near
data processing.

Jie Yang got his master’s degree from the College
of Control Science and Engineering at Zhejiang Uni-
versity in 2006, and his bachelor’s degree from the
Department of Mechanical Engineering at Zhejiang
University in 2004. He has worked at Broadcom and
Micron, and is currently working at Alibaba Cloud.

Feng Zhu got his Ph.D. degree from the Depart-
ment of Electrical and Computer Engineering at
University of Texas at Austin in 2008, his master’s
degree from the Department of Electrical Engineer-
ing at University of Notre Dame in 2003, and his
bachelor’s degree from the Department of Electrical
Engineering at Tsinghua University in 2001. He is
currently working at Alibaba Cloud.

Shu Li got his Ph.D. degree from the Department
of Electrical Engineering in Rensselaer Polytechnic
Institute in 2009, and his master’s and bachelor’s de-
gree from the Department of Electrical Engineering
at Tsinghua University int 2005 and 2003, respec-
tively. He has worked at Marvell Semiconductor and
Broadcom (formerly LSI), and is currently working
at Alibaba Cloud.

Linpeng Huang (Senior Member, IEEE) received
his M.S. and Ph.D. degrees in computer science
from Shanghai Jiao Tong University in 1989 and
1992, respectively. He is a professor of computer
science in the Department of Computer Science and
Engineering, Shanghai Jiao Tong University. His
research interests include distributed systems and
service oriented computing.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3586891

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 18,2025 at 01:30:04 UTC from IEEE Xplore.  Restrictions apply. 


